

Understanding Structural Changes in LMR-NMC Materials

Project ID: ES194

Jason R. Croy

Voltage Fade Team

Annual Merit Review Washington DC, June 16-20, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

- Start: October 1, 2012
- End: Sept. 30, 2014
- Percent complete: 75%

Budget

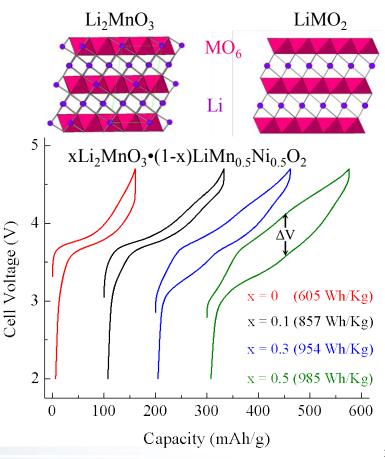
Voltage Fade project

Barriers

Development of a PHEV and EV batteries that meet or exceed DOE/USABC goals.

Partners

- ORNL
- NREL
- ARL
- JPL


Relevance

- Lithium- and manganese-rich (LMR-NMC) composite cathodes offer considerable gains over current state-of-the-art chemistries.
- Voltage fade and hysteresis represent significant challenges to the commercialization of these oxides.
- An atomic level understanding of the mechanisms driving voltage fade and hysteresis is necessary for the design of novel, robust LMR-NMC cathodes.

Parameters of currently available Li-ion cathodes

Material	Voltage (vs. Li/Li ⁺)	Capacity (mAh/g)	
LiCoO ₂	3.8	150	570
LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂	3.7	170	629
$LiNi_{0.8}Co_{0.15}AI_{0.05}O_{2}$	3.7	185	685
LiMn ₂ O ₄	4.0	110	440
LiFePO ₄	3.4	160	544

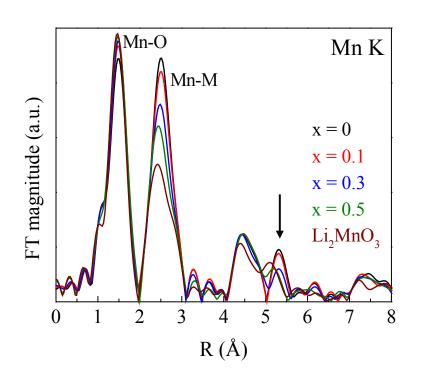
Composite cathode energy densities

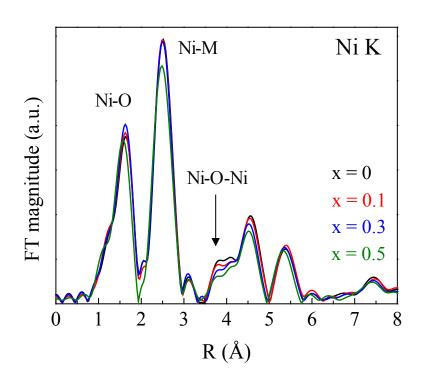
Approach

- Take advantage of DOE national user facilities to gain insights into the factors affecting voltage fade and hysteresis.
- Develop an atomic-level model that captures the essential electrochemical observations associated with voltage fade and hysteresis.
- Provide experimental data to the theory component of the voltage fade team to further evaluate the model.
- Provide feedback to the synthesis component of the voltage fade team.
- Design and carry out experiments to validate and refine our understanding of voltage fade and hysteresis.
- Use the understanding/information gained to aid the design of more robust cathode structures.

Progress - What We Know About LMR-NMC

• Local structure is driven by charge ordering giving regions of two types:

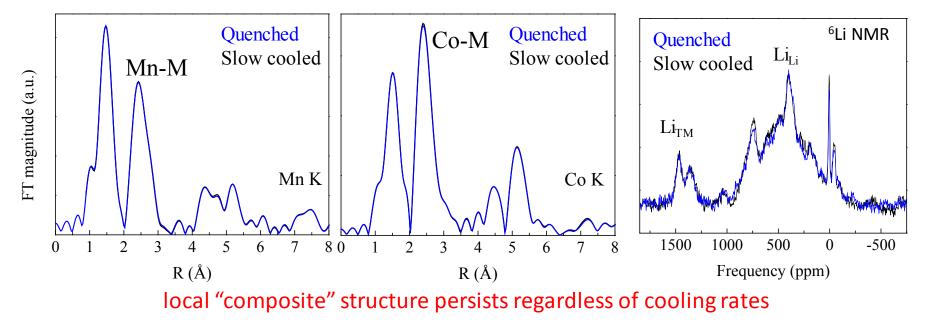

TM-rich (LiMO₂) – High M-M coordination giving "standard" electrochemical behavior.

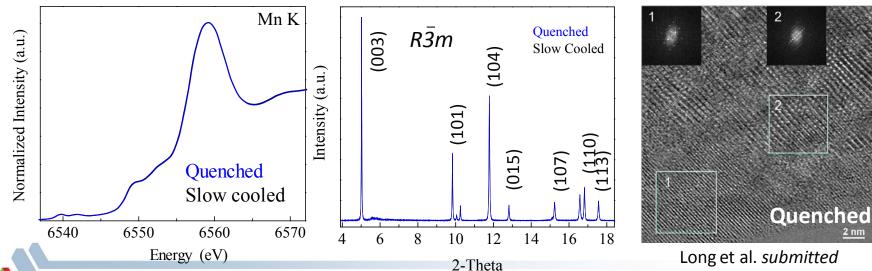

Mn-rich ($\underline{\text{Li}_2\text{MnO}_3}$) – Li/Mn rich regions which show strong tendencies for Li-Mn ordering. Low Mn-M coordination, electrochemically different than bulk $\underline{\text{Li}_2\text{MnO}_3}$.

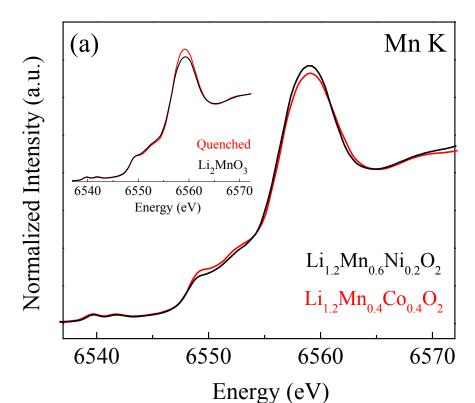
- Activation of the "Li₂MnO₃ component" (LiMn₆-type ordered regions) is necessary to induce voltage fade – concomitant with a *structural* hysteresis.
- Voltage fade and hysteresis increase with increasing Li and Mn ordering
 → increasing x in xLi₂MnO₃ (1-x)LiMO₂.
- Mn-rich regions undergo more severe structural changes relative to TM-rich regions → Li/Mn ordering plays a key role in VF and hysteresis.
- Hysteresis and voltage fade are correlated and depend on Li utilization, voltage, rate, and temperature (cycling is worse than high voltage ageing).
- A model has been developed to help us understand these observations.

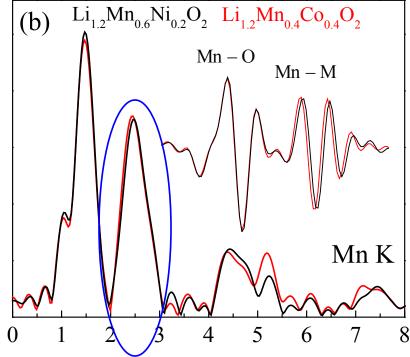
Charge Ordering Dictates Composite Nature

 $xLi_2MnO_3 \bullet (1-x)LiMn_{0.5}Ni_{0.5}O_2$

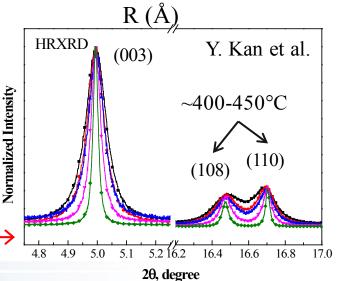


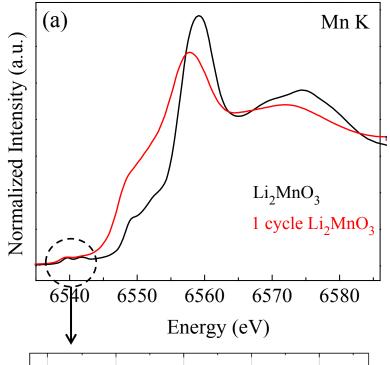

- Mn-M coordination decreases with increasing x. Local environment tends towards that of pure Li_2MnO_3 (no peak at ~4 Å).
- Changes to local nickel environment are relatively small (peaks at ~4 Å).
- Charge ordering is a dominating factor dictating local structure. Most Li/Ni exchange associated with MnNi-rich component (Ni-O-Ni).



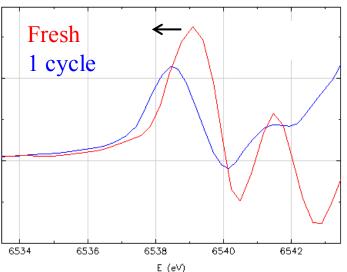

Synthesis and Control Over Local Ordering

850°C for 12 hour followed by: Quenched – LN₂ cooled plates, Slow cooled – 16 hours to RT



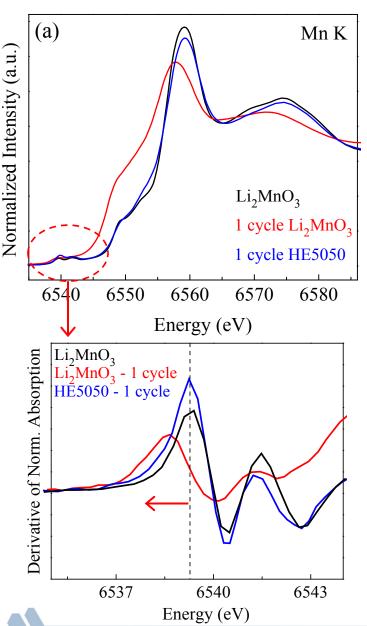

FT magnitude (a.u.)

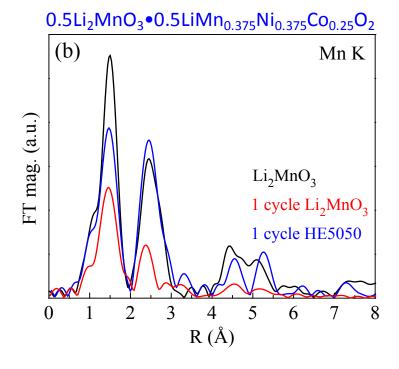

- Both samples quenched from 850°C
- Variations between compositions due to Mn⁴⁺/Ni²⁺ interactions and Li⁺/Ni²⁺ exchange
- Li and Mn ordering dominates, Mn-M CN ~4 in both compositions regardless of cooling rates.
 Related to the low-temp formation of Li₂MnO₃.



Li₂MnO₃ Vs. "Li₂MnO₃ component" (XAS)

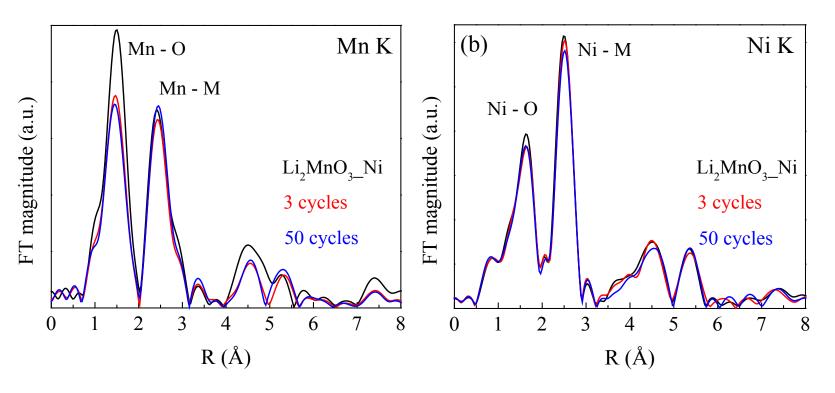
Croy et al. unpublished





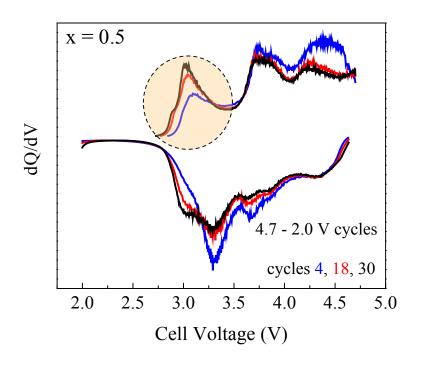
- Mn^{3+} and extreme damping of EXAFS \rightarrow JT distortions.
- Single O-bond gives Mn-O coordination $^{\sim}3$ (1.9 Å).
- JT distortion gives coordination of $^{\sim}6$ at (1.9/2.3 Å).
- Likely two phases present (Li₂MnO₃, ??).

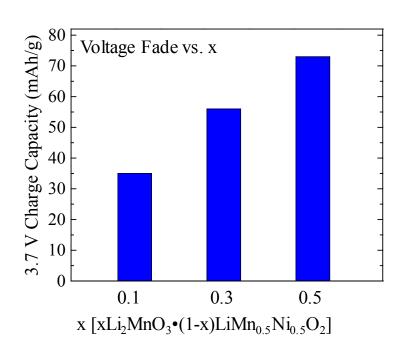
Li₂MnO₃ Vs. "Li₂MnO₃ component" (XAS)



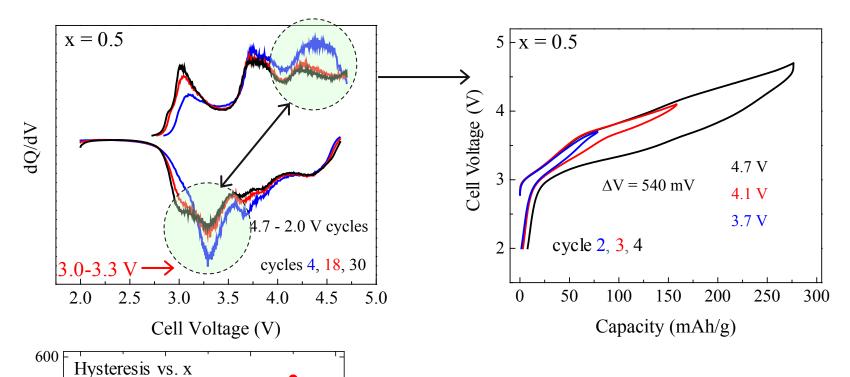
- No evidence for significant Mn⁴⁺ reduction to Mn³⁺
- Single O-bond gives Mn-O coordination of ~6 (1.9 Å)
 (See ES193, H. Iddir)
- No damping of Mn-M peaks
- Integrated LMO is clearly different than pure LMO

Li₂MnO₃ Component Most Effected by Cycling


 $0.5 \text{Li}_2 \text{MnO}_3 \bullet 0.5 \text{LiMn}_{0.5} \text{Ni}_{0.5} \text{O}_2$



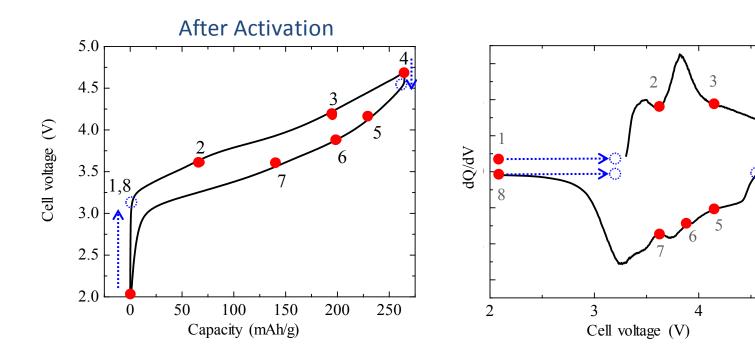
- Clear changes observed in the local manganese environment in early cycles.
- Very small changes to the nickel environment.
- Mn-Ni interactions in MnNi-rich regions stabilize Mn on edges of domains.
- Interior of Li/Mn-rich regions are most effected by cycling.


Part 1 Summary

- Charge ordering, especially between Li and Mn, is the dominant factor dictating local, nanocomposite nature of xLi₂MnO₃•(1-x)LiMO₂ oxides.
- Li/Mn rich domains form at low temperatures early in synthesis resulting in two different average environments for Mn relative to other TMs.
- Li/Mn rich domains are locally similar to Li₂MnO₃; however, the observed electrochemistry is different than pure Li₂MnO₃.
- Li/Mn ordering plays a critical role in structural changes on cycling.

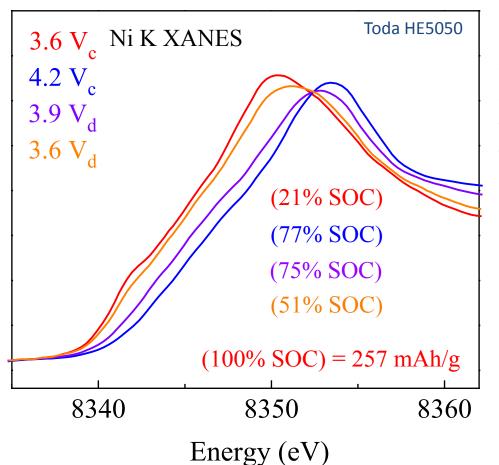
- Activation and high voltage cycling (~4.4 V) result in low voltage capacity (<3.5 V) due to structural changes – VF configuration.
- Magnitude of "VF capacity" is proportional to lithium in the transition metal layers of the initial composite e.g., Li and Mn ordering.

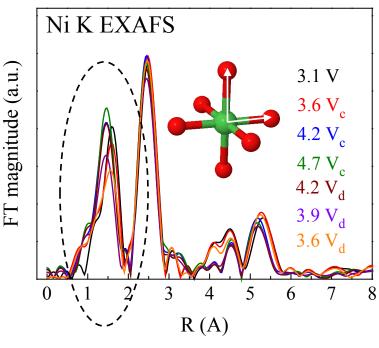
0.6

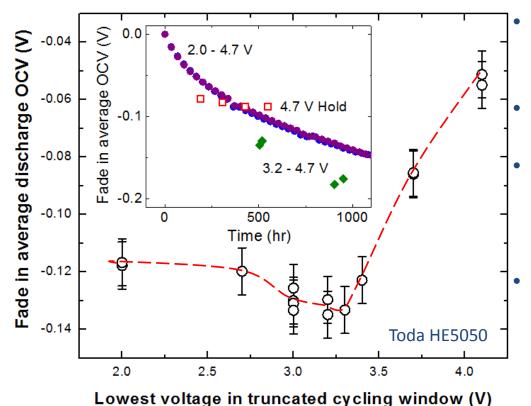

- Lithium removed above ~4.0 V cannot be entirely re-accomodated until ~3.2 V on discharge.
- Represents a ~1.0 V hysteresis for some fraction of the overall lithium content.
- Magnitude depends on x in xLi_2MnO_3 (1-x)LiMO₂.

450

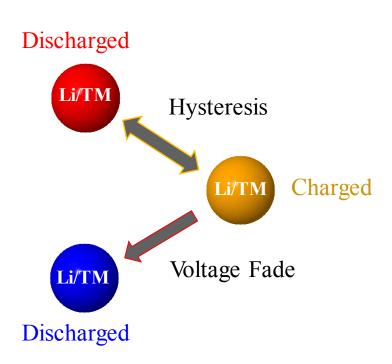
300


150


ΔV at 50% SOC (mV)


- Study the structure and TM oxidation states at equivalent voltages and SOCs on charge and discharge (XAS and XRD) <u>after activation.</u>
- Charge/discharge to each point followed by 12 hour hold or rest.
- Cathodes were prepared and sealed in aluminized Mylar pouches under helium atmosphere for ex-situ XAS and XRD.

- Same trend for Mn and Co K-edge data → Spectroscopic evidence of hysteresis.
- Lithium does not have access to the same sites on charge and discharge even at equivalent lithium contents.



- Cells cycled in truncated windows with decreasing, lower cutoff voltages (x axis).
- Upper cutoff voltage constant at 4.7 V.
- Main graph shows the average fade in discharge OCV between cycles 2 and 23 as a function of lower cutoff voltage (-----).
- Inset shows calendar time plot Fade in OCV as a function of time on test along with 4 cells held at 4.7 V for several, equivalent times on test (□).
- Decreasing the lower cutoff voltage clearly increases voltage fade with a maximum fade found between 3.0 3.3 V.
- Cycling between 4.7 3.2 V accelerates voltage fade more than any other electrochemical exposure. Same window giving significant hysteresis.

Proposed Mechanism of Voltage Fade and Hysteresis

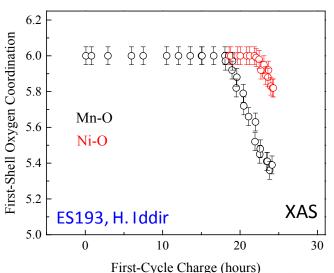
- VF/hysteresis are related, structure and charge/discharge energetics differ.
- Any model for this class of materials must account for both.

Our Conceptual Interpretation of VF and Hysteresis

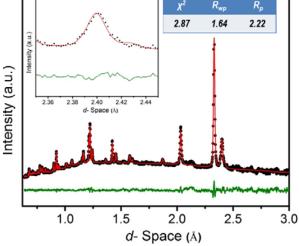
- Charging to ~3.8 V and above induces migration to tetrahedral sites
- Cations are 'stuck' in that site until a critical Li content is reached on discharge (~3.2 V)
- At the critical lithium content cations can:
 - migrate back to original site (hysteresis)
 - continue on to the lithium layer (voltage fade)
 - remain 'stuck' capacity loss, impedance rise

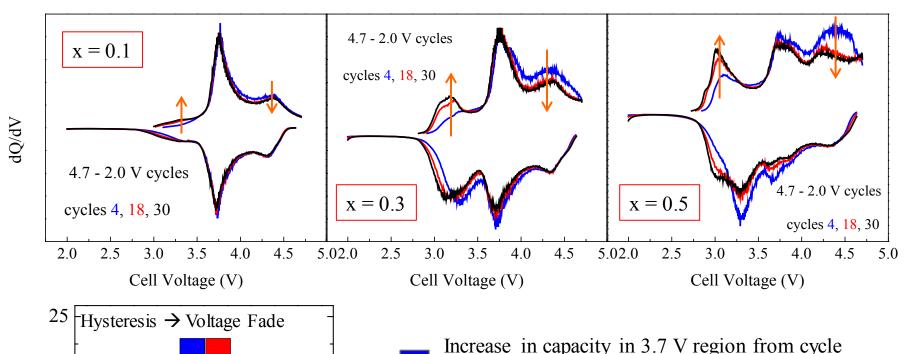
Gallagher et al., Electrochem. Comm., (2013)

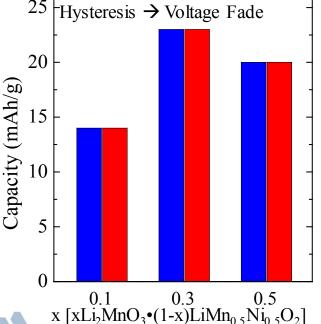
Why Propose This Model?


Ma et al., JES, 160, A279 (2013)

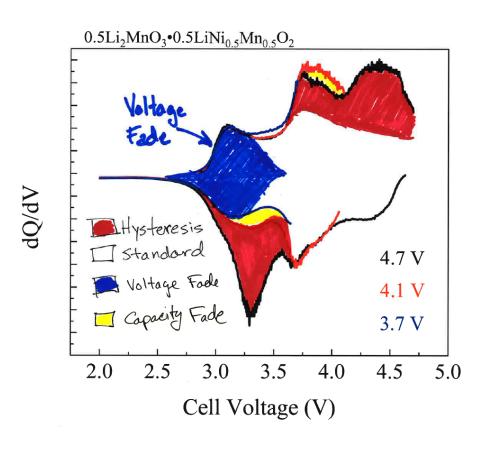
'Dumbbell' formation (tetrahedral migration) in structural transformations of layered materials.

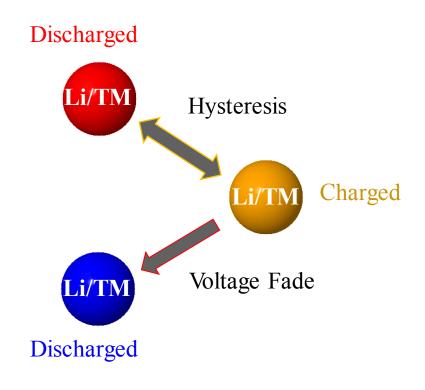

Observed for other layered systems


- LiVO₂ (Thackeray)
- LiMnO₂ (Ceder, Bruce) 3.2 V processes
- Li_{1,2}Mn_{0,4}Cr_{0,4}O₂ (Balasubramanian)
- $LiMn_{0.5-x}Cr_{2x}Ni_{0.5-x}O_2$ (Karan)
- Now have spectroscopic evidence for hysteresis mechanism (B. Key – ES187) (H. Iddir – ES193)



ORNL neutron data

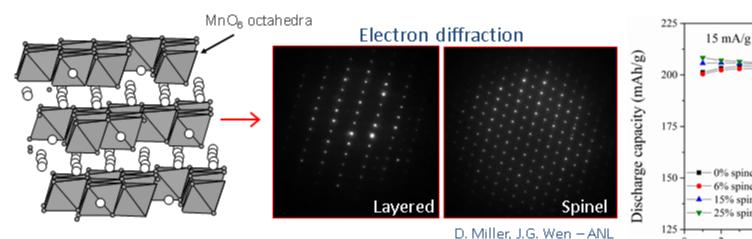


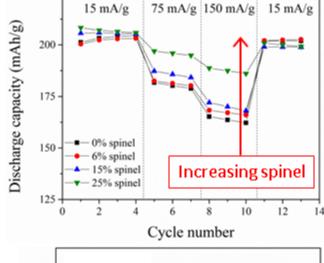


- Increase in capacity in 3.7 V region from cycle 4 to 30 (2.0 4.7 V windows) 'Voltage Fade config.'
- Decrease in capacity in 3.8 4.7 V region from cycle 4 to 30 (minus irr. cap.) 'Hysteresis config.'

Decrease in 'hysteresis capacity' leads to a concomitant increase in 'voltage fade capacity'

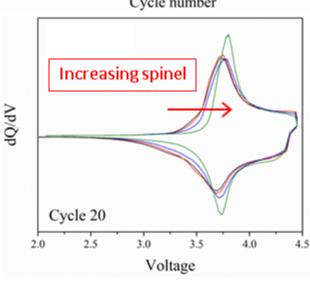
EC models agree – See ES189, D. Dees





• Future studies will be aimed at direct verification, from experiment and theory, of cation occupancies (tetrahedral/octahedral) and oxidation states at different SOCs.

Exploring Stabilization of LMR-NMC Structures


 Different synthetic routes are being explored to produce layered-layered materials with a stabilizing spinel component (See BATT poster ES049). See Also C. Johnson ES190.

Li₂MnO₃ precursors

- Li₂MnO₃ template used to integrate spinel component into layered composites.
- Similar strategy to stabilizing layered cathodes with integrated Li₂MnO₃ component.
- Initial results show improved first-cycle efficiency and rate capability.

Summary

- Charge ordering drives local "composite" nature of LMR-NMC materials.
- Voltage fade and hysteresis are related and depend on x in xLi₂MnO₃ (1-x)LiMnO₂.
 - Activation of the Li₂MnO₃ component is necessary for both
 - Both increase in prominence with increasing x
 - Cycling above ~4 V extracts lithium that is not accommodated on discharge until 3.0 – 3.3 V
 - Window studies show that a lower cutoff of 3.0 3.3 V accelerates
 Voltage fade faster than any other electrochemical exposure
- Proposed model involves tetrahedral migration of lithium and TMs on charge creating a barrier to lithium insertion until a sufficient driving force is established at some critical lithium content on discharge (~3.2 V).
- Driving force triggers one of three possibilities:
- 1) TM/Li returns to its original octahedral position in the TM layer → Hysteresis
- 2) TM/Li migrates to a new octahedral position (e.g. in the Li layer) -> Voltage Fade
- 3) TM/Li becomes trapped in the tetrahedral site \rightarrow Loss of capacity, increased impedance